Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc., AGRIS (FAO) and DOAJ. The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 "Science and business" financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters). The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This issue is printed with the financial support by Contract No. DNP 06-41/20.12.2017, financed from Fund ‘Scientific Research’ grant Bulgarian scientific periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editors and Sections
Genetics and Breeding
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsonev (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Jean-François Hocquette (France)
Bogdan Szostak (Poland)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

Editors and Sections
Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Co-Editor-in-Chief
Dimitar Panayotov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria
Agronomic performance of mutant lines of winter two-rowed barley

B. Dyulgerova*, D. Valcheva, N. Dyulgerov

Institute of Agriculture, 8400 Karnobat, Bulgaria

(Manuscript received 24 July 2017; accepted for publication 19 January 2018)

Abstract. The aim of this investigation was to study agronomic and morphological traits of winter two-rowed barley mutant lines in the M6 and M7 generations. Eight mutant lines, their parent – breeding line 244D and national standard cultivars – Obzor and Emon were evaluated in Complete Block Design with four replications. The research was conducted in the 2013/2014, 2014/2015 and 2015/2016 growing seasons in the experimental field of the Institute of Agriculture – Karnobat, Southeastern Bulgaria. The characters studied included days to heading, plant height, lodging, peduncle length, spike length, awn length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight, grain yield, protein content, extract content and grading (>2.5mm). Mutant lines M1/3, M1/5 and M1/217 produced a significantly greater grain yield than the parent and standard cultivars. The improvement of grain yield was associated with increasing of spike length and grain weight per spike. The studied mutant lines were characterized with a high yield ability combined with other valuable agronomic traits and can be used in a breeding program for developing winter malting barley varieties.

Keywords: barley, mutation, grain yield, agronomic traits

Introduction

Barley is one of the major grain crop. Its distribution is worldwide and is of considerable economic importance for animal feed and malt production. To improve yield and other traits in barley, many breeding techniques are being used successfully. Mutation breeding is one of the important techniques to induce variation. The mutant cultivars in different crops had a great economic impact on agriculture and food productions (Ahloowali et al., 2004). More than 300 varieties of barley have been officially released by mutation breeding technique (Joint FAO/IAEA Mutant Variety Database).

Mutation breeding is part of the winter barley breeding program at the Institute of Agriculture, Karnobat and it has led to improved barley cultivars with higher yield (Vulchev and Dyulgerova, 2011; Dyulgerova and Vulchev, 2012; Dyulgerov, 2017).

Natural or induced genetic diversity can be promoted for the improvement of all major crops and the use of mutagenesis to create novel variation in particularly valuable crops with limited genetic variability. The use of mutagenesis in breeding has involved the selection of individual mutants with improved traits and their incorporation into breeding programmes (Parry et al., 2009). The mutants developed in barley had great potential for direct release and to include them in cross breeding programme. Many barley cultivars possess tolerance to biotic and abiotic stress and improved traits developed in the world through induced mutagenesis (Ahloowali et al., 2004).

The aim of this investigation was to study agronomic and morphological traits of winter two-rowed barley mutant lines in the M6 and M7 generations.

Material and methods

The research work was conducted during 2013/2014, 2014/2015 and 2015/2016 growing seasons at the Institute of Agriculture, Karnobat. For mutation induction the seeds pre-soaked in water for 16 hours were treated with 2 mM sodium azide for 2 hours, prepared in a buffer solution (pH=3) at room temperature and washed for 6 hours after treatment. The M1 plants grown in field were harvested in bulk. In M2 generation one spike per selected plant was harvested and the seeds of each M2 spike were sown in the field as spike to row progeny for M3 generation. The parent variety was planted in every 10 rows as a check. The mutants were developed through selection for higher yield than the parental material by applying selection pressure from M2-M6. Finally, the selected lines were tested in yield trial in the present investigation.

The 8 mutants and their parent - breeding line 244D and national standard cultivars – Obzor and Emon were evaluated in yield trial in Complete Block Design with four replications.

The characters studied included days to heading, plant height (cm), lodging (scale 9-1, where 9=no lodging and 1=100% lodging), peduncle length (cm), spike length (cm), awn length (cm), spikelet number per spike, grain number per spike, grain weight per spike (g), 1000 grains weight (g), grain yield (kg/ha), protein content (%), extract content (%) and grading (>2.5 mm, %).

The data were recorded on a plant basis by randomly selecting 10 plants from each plot. Days for heading, lodging, 1000 kernel weight, grain yield, protein content, extract content and grading were estimated on plot basis.

The significance of differences among means was compared by using Least Significant Difference (LSD) test at the 0.05 level of probability and the correlations were analyzed by Pearson’s correlation coefficient. Analyses were performed using SPSS 16.00 for Windows 16.0 (SPSS Inc., 2007).

Results and discussion

Mean grain yield and yield related traits of the mutant lines, parent line and check varieties (2013/2014 - 2015/2016) are...
presented in Table 1.

From the pooled data of the two years, there were no significant differences between mutant lines and parent variety for plant height and lodging. Plant height of mutant lines varied from 97.60cm to 109.15cm. Minimal lodging was recorded in line M 1/3 and maximal lodging in line Obzor. Days to heading of mutant lines were between 195.67 (M1/511) and 197.17 (M1/25). There were no significant differences in days to heading among tested lines, parent and standard Emon. Spike length ranged from 7.24cm (Obzor) to 10.82cm (M1/5) Lines M 1/3, M 1/5 and M 1/27 had significantly longer spike compared with the parent line 244D. Awn length ranged from 9.63cm to 12.00cm among the studied lines. Peduncle length of the mutant lines varied from 28.31cm (M1/25) to 38.93cm (M1/511), while that for the parent line was 31.67cm. Two mutant lines M1/3 and M1/5 had a significantly higher spikelet number per spike compared to the parent line. The highest number of grain per spike (32.01) was observed in M3/11, followed by M1/217 (31.65), M1/3 (31.53) and M1/5 (31.31). The lowest number of grains per spike (28.22) was observed in M3/2, M1/217 (1.85g) and M1/3 (1.83g) had the highest grain weight per spike, which was significantly different from 244D. The value of 1000 grains weight ranged from 41.84g (M1/25) to 46.67g (M1/3). The grain yield of the mutant lines was from 8.22% to 18.02% higher than the grain yield of the parent line. Lines M1/3 (7068 kg/ha), M1/5 (7097 kg/ha) and M1/217 (7483 kg/ha) had a significantly higher grain yield over parent 244D (6013 kg/ha) and over checks Obzor (6303 kg/ha) and Emon (6491 kg/ha).

Table 1. Mean grain yield and yield related traits of mutant lines, parent line and check varieties (2013/2014 - 2015/2016)

<table>
<thead>
<tr>
<th>Mutant lines</th>
<th>PH</th>
<th>L</th>
<th>DH</th>
<th>SL</th>
<th>AL</th>
<th>PL</th>
<th>SNS</th>
<th>GNS</th>
<th>GWS</th>
<th>TGW</th>
<th>GY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obzor</td>
<td>102.90</td>
<td>5.50</td>
<td>199.83</td>
<td>7.24</td>
<td>9.44</td>
<td>28.85</td>
<td>33.38</td>
<td>31.84</td>
<td>1.62</td>
<td>43.59</td>
<td>6302.50</td>
</tr>
<tr>
<td>Emon</td>
<td>101.43</td>
<td>7.33</td>
<td>198.50</td>
<td>7.49</td>
<td>9.40</td>
<td>27.35</td>
<td>32.74</td>
<td>31.45</td>
<td>1.59</td>
<td>45.59</td>
<td>6490.83</td>
</tr>
<tr>
<td>244D</td>
<td>103.11</td>
<td>7.75</td>
<td>197.17</td>
<td>9.23</td>
<td>11.40</td>
<td>31.67</td>
<td>30.06</td>
<td>28.61</td>
<td>1.57</td>
<td>44.43</td>
<td>6013.33</td>
</tr>
<tr>
<td>M 1/3</td>
<td>107.31</td>
<td>8.33</td>
<td>197.00</td>
<td>10.62</td>
<td>12.00</td>
<td>31.29</td>
<td>35.27</td>
<td>31.53</td>
<td>1.83</td>
<td>46.67</td>
<td>7068.33</td>
</tr>
<tr>
<td>M 1/5</td>
<td>101.88</td>
<td>8.17</td>
<td>197.00</td>
<td>10.82</td>
<td>10.75</td>
<td>35.35</td>
<td>33.32</td>
<td>31.31</td>
<td>1.77</td>
<td>43.92</td>
<td>7096.67</td>
</tr>
<tr>
<td>M 1/25</td>
<td>99.69</td>
<td>8.25</td>
<td>197.17</td>
<td>9.67</td>
<td>10.43</td>
<td>28.31</td>
<td>31.35</td>
<td>30.16</td>
<td>1.68</td>
<td>41.84</td>
<td>6890.00</td>
</tr>
<tr>
<td>M 1/217</td>
<td>108.16</td>
<td>8.25</td>
<td>196.58</td>
<td>10.41</td>
<td>10.68</td>
<td>32.10</td>
<td>32.62</td>
<td>31.65</td>
<td>1.85</td>
<td>45.54</td>
<td>7483.33</td>
</tr>
<tr>
<td>M 1/511</td>
<td>109.15</td>
<td>7.67</td>
<td>195.67</td>
<td>10.12</td>
<td>10.64</td>
<td>38.93</td>
<td>31.53</td>
<td>30.18</td>
<td>1.80</td>
<td>46.03</td>
<td>6930.00</td>
</tr>
<tr>
<td>M 2/14</td>
<td>97.60</td>
<td>8.25</td>
<td>196.50</td>
<td>9.44</td>
<td>9.63</td>
<td>30.22</td>
<td>31.94</td>
<td>30.53</td>
<td>1.60</td>
<td>44.12</td>
<td>6507.50</td>
</tr>
<tr>
<td>M 3/2</td>
<td>102.58</td>
<td>8.17</td>
<td>196.08</td>
<td>9.40</td>
<td>10.99</td>
<td>31.51</td>
<td>29.62</td>
<td>28.22</td>
<td>1.65</td>
<td>45.97</td>
<td>6712.50</td>
</tr>
<tr>
<td>M 3/11</td>
<td>100.89</td>
<td>8.00</td>
<td>196.42</td>
<td>10.05</td>
<td>10.60</td>
<td>29.94</td>
<td>33.24</td>
<td>32.01</td>
<td>1.73</td>
<td>46.12</td>
<td>6886.67</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>6.9</td>
<td>0.84</td>
<td>2.24</td>
<td>1.12</td>
<td>0.91</td>
<td>2.52</td>
<td>3.19</td>
<td>2.18</td>
<td>0.25</td>
<td>1.71</td>
<td>562.44</td>
</tr>
</tbody>
</table>

PH - plant height (cm), L - lodging (scale 9-1), DH - days to heading, SL - spike length (cm), AL - awn length (cm), PL - peduncle length (cm), SNS - spikelet number per spike, GNS - grain number per spike, GWS - grain weight per spike (g), TGW - 1000 grains weight (g), GY - grain yield (kg/ha)

The results of linear correlation between grain yield and yield related traits are shown in Table 2. Grain yield was found to be positively and significantly associated with peduncle length, spike length, spikelet number per spike, grain number per spike and grain weight per spike, indicating the importance of those traits for yield improvement in mutant lines. These results are supported by Jouyan et al. (2015) and Ahmad et al. (2016) for peduncle length, by Hosin Babaiy et al. (2011) and Budakli Carpici and Celik (2012) for spike length, grain number per spike and grain weight per 1 pike.

Table 2. Correlation coefficients between grain yield and yield related traits

<table>
<thead>
<tr>
<th>Traits</th>
<th>L</th>
<th>DH</th>
<th>SL</th>
<th>AL</th>
<th>PL</th>
<th>SNS</th>
<th>GNS</th>
<th>GWS</th>
<th>TGW</th>
<th>GY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>-0.667**</td>
<td>-0.021</td>
<td>-0.054</td>
<td>-0.291</td>
<td>0.471*</td>
<td>0.286</td>
<td>0.345</td>
<td>-0.088</td>
<td>-0.100</td>
<td>0.107</td>
</tr>
<tr>
<td>L</td>
<td>0.160</td>
<td>0.401</td>
<td>0.136</td>
<td>-0.331</td>
<td>0.135</td>
<td>0.037</td>
<td>0.209</td>
<td>-0.156</td>
<td>-0.202</td>
<td></td>
</tr>
<tr>
<td>DH</td>
<td>0.157</td>
<td>-0.387</td>
<td>-0.361</td>
<td>0.335</td>
<td>0.317</td>
<td>0.071</td>
<td>0.037</td>
<td>-0.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>-0.188</td>
<td>0.287</td>
<td>0.736**</td>
<td>0.734**</td>
<td>0.752**</td>
<td>0.228</td>
<td>0.429*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL</td>
<td>-0.236</td>
<td>-0.444*</td>
<td>-0.414</td>
<td>-0.055</td>
<td>-0.069</td>
<td>-0.333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>0.352</td>
<td>0.439*</td>
<td>0.267</td>
<td>0.309</td>
<td>0.601**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNS</td>
<td>0.928**</td>
<td>0.645**</td>
<td>0.157</td>
<td>0.451*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNS</td>
<td>0.673**</td>
<td>0.132</td>
<td>0.509*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GWS</td>
<td>0.581**</td>
<td>0.536*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGW</td>
<td>0.349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PH - plant height (cm), L - lodging (scale 9-1), DH - days to heading, SL - spike length (cm), AL - awn length (cm), PL - peduncle length (cm), SNS - spikelet number per spike, GNS - grain number per spike, GWS - grain weight per spike (g), TGW - 1000 grains weight (g), GY - grain yield (kg/ha); *significant at the 5% level; ** significant at the 1% level.
The protein content in barley grains has been considered as an important trait affecting malt quality. According to European Brewing Association, the barley used for malting should have a protein content below 11.5%. Generally, malt extract is reduced with the increase of protein content in grains, and higher protein content is also a major factor attributed to deterioration of flavor stability and formation of turbidity in beer. It is well documented that the protein content in barley grains is genetically controlled, but easily affected by the environmental conditions (Smith, 1990; Kaczmarek et al., 1999; Zhang et al., 2001; Wang et al., 2001). In our study standard
varieties Obzor and Emon had a protein content of 11.84% and 11.95% (Figure 1). The lowest protein content was found in parent line 244D (10.81%). Protein content in mutant lines varied from 11.72% to 12.34%.

Grain grading is an important parameter for malt barley. The percentage of a plump grain on a 2.5×20mm sieve for malt barley must be no less than 90%. Weather conditions, especially during the grain filling period, had the strongest influence on the grain grading percentage (Schelling et al., 2003; Paynter and Young, 2004). The variety Emon (95.30%) and the lines M 1/511 (90.33%), M 2/12 (90.47%) met the requirements for malting barley grain grading (Figure 2).

Extract content is the most important economic trait of malting barley. The extract content of the standard varieties was 76.87% for Obzor and 77.07% for Emon (Figure 3). Only one of the mutant lines M3/2 (77.13%) showed higher extract content compared to parent line 244D (75.63%).

The results of the present study showed that by applying induced mutagenesis useful changes in important agronomic traits such as grain yield, yield and malt quality related traits were obtained. Similar findings were reported by Bughio et al. (2007), Deniz (2007), Singh and Balyan (2009), Laghari et al. (2012), Albokari (2014), Obare et al. (2014) and Dyulgerova and Dyulgerov (2017).

Conclusion

The studied barley lines showed grain yield higher than that of the parent line by 8.2-18.0%. Mutant lines M1/3, M1/5 and M 1/217 had a significantly greater grain yield compared to the parent line and the check varieties Obzor and Emon. Positive changes in spike length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight and extract content were also observed. The improvement of grain yield was associated with increasing of spike length and grain weight per spike. This study showed positive effects in the use of experimental mutagenesis in inducing improvement for important agronomic traits in winter barley.

References

Review

Achievements and problems in the weed control in grain maize (Zea mays L.)
G. Delchev, M. Georgiev

Genetics and Breeding

Yield and coefficient of ecological valence of spring barley in the regions of Sadovo and Karnobat, Bulgaria
N. Neykov, T. Mokreva

Agronomic performance of mutant lines of winter two-rowed barley
B. Dyulgerova, D. Valcheva, N. Dyulgerov

Phenotypic diversity in six-rowed winter barley (Hordeum sativum L.) varieties
N. Dyulgerov, B. Dyulgerova

Evaluation of rye specimens in maturity stage on the base of mathematical – statistical analysis
V. Kuneva, E. Valchinova, A. Stoyanova

Evaluation of lentil cultivars and lines for resistance to Fusarium oxysporum f.sp. lentis
M. Koleva, Y. Stanoeva, I. Kiryakov, A. Ivanova, P. Chamurlyiski

Registration of a new sunflower hybrid - Sevar
P. Peevska, M. Drumeva, G. Georgiev

Nutrition and Physiology

The effect of novel xylanase on feeding value of diet containing cereal by-products for broilers
J.M. Abdulla, S.P. Rose, V. Pirgozliev

Effect of dietary garlic powder and probiotics supplementation on growth performance of male Ross 308 broilers
H. Lukanov, I. Pavlova, A. Genchev

Slaughter traits of Pharaoh Japanese quails
A. Genchev, H. Lukanov, I. Penchev

Blood count in dogs with mammary gland carcinoma
Ts. Hristov, R. Binev

Production Systems

Economic efficiency of fattening on different genotypes slow-growing and fast-growing broiler chickens
M. Oblakova, Y. Popova, P. Hristakieva, N. Mincheva, M. Lalev
Effect of nutmeg extract supplementation on some productive traits and economic efficiency of common carp (Cyprinus carpio L.) cultivated in recirculation system
G. Zhelyazkov, S. Stoyanova, I. Sirakov, K. Velichkova, Y. Staykov

Agriculture and Environment

Influence of biomanipulation on the living communities and the water quality in the Strezhevo hydroecosystem, R. Macedonia
R. Nastova, V. Kostov, N. Gjorgovska, V. Levkov

Product Quality and Safety

Residue analysis of difenoconazole in apple fruits grown in Republic of Macedonia
V. Jankuloska, I. Karov, G. Pavlovskas

Organoleptic properties of white yam (Dioscorea rotundata poir) as affected by autoclaving time
M. Ahmed, Y.B. Kiri, M.S. Abubakar

Influence of Goji berries on oxidative changes, microbiological status and chemical properties of sausages
A. Mitev, A. Kuzelov, E. Joshevska
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Table: The editors recommend up to 15 tables for full research paper. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.